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Abstract. In this paper, we develop a single-type logic for natural language

along the lines of [36]. This logic, TY3
0, takes objects of different syntactic

categories and model-theoretic domains to be structured by the same logical

type. Its language, a variant of the simply-typed lambda calculus, is inter-

preted in partial Henkin models. We give a Gentzen-style sequent calculus

for TY3
0 and prove its soundness and completeness with respect to the class

of models. To show the logic’s application adequacy, we provide a TY3
0 se-

mantics for a standard fragment of English. Partial possible worlds, which

are identified with elements in the logic’s base domain, enable us to obtain

the standard modal operators.

Keywords Single-type hypothesis, Data semantics, Montague grammar, Par-

tial logic, Type theory.

1. Partee’s Conjecture

Unification constitutes one of the central aims of science. More than attempting

to discover large numbers of facts about the observable universe, scientists aim

to establish their common underlying properties and interrelations. We strive

for unification for several reasons: Far from only promoting cognitive economy

and simplicity, unification explains the success of one theory (or model) in terms

of another, establishes their relative consistency, and effects a mutual flow of

evidential support between the two theories. Examples of relevant unified the-

ories include electromagnetism (as a unification of electricity, magnetism, and

optics), genetics (as a unification of certain effects that are produced on devel-

oping organisms), and the standard model of particle physics (as a unification

of the electromagnetic, the strong, and the weak nuclear force [30]).

The present paper makes a contribution to the unificatory project. Its do-

main of unification constitutes the so-called linguistic, or ontological ‘zoo’. The
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latter term was introduced in [2] to describe the plethora of objects that are as-

sumed as the referents of certain classes (e.g. nouns, verbs, sentences) of natural

language expressions. These include, but are not exhausted by, individual and

plural objects (e.g. John, the boys), propositions (John runs), first- and higher-

order properties (runs, is a color), relations (loves), property abstracts (love),

kinds (the Siberian tiger), matter (mud), processes (John running), events (John

stumbling), possible worlds, situations, and periods of time.

Our master objective in this paper lies in the identification of single basis for,

and the description of a procedure for the bootstrapping of the above classes of

objects. Richard Montague’s work on formal natural language semantics [27–29]

makes a significant contribution to this goal: Following Church’s Simple Theory

of Types [14], Montague [27] reduces the referents of the small subset of English

from [29] to constructions out of two basic types of objects: individuals and

propositions (or functions from indices to truth-values). From them, proper-

ties and relations are constructed as functions from individuals to propositions,

functions from (functions from individuals to propositions) to propositions, and

from individuals to (functions from individuals to propositions). The algebraic

structure on domains enables the construction of the remaining classes of objects.

However, the question remains whether it is possible to construct the ontological

zoo from a single, rather than two, semantic bases. Recent research on language

development [9–11,40] seems to point in that direction.

Partee [36] takes first steps towards a complete unification of the linguis-

tic ontology. Following Montague’s method of indirect interpretation ([29]), she

translates English expressions into terms of the simply-typed lambda calculus,

which are then assigned values in a model. Her hypothesis (‘Natural language

can be modeled through the use of a single formal basis’) is correspondingly

formulated in terms of logical types, rather than semantic domains. Partee sup-

ports her hypothesis by sketching how a one-type system enables the formation

of types for many classes of linguistic referents. However, while she identifies her

basic type with the type of properties of situations, her reasons for this choice
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of domain, let alone her arguments for its structure, are far from imperative.

This is not surprising: Partee’s paper is a contribution to a set of open linguis-

tic puzzles ([37]). Rather than attempting to formulate a sound and complete

single-type logic, Partee confines herself to an indication of its semantics’ main

ingredients. A proof of workability is left to the scientific community.

The present paper accepts Partee’s challenge. Its core objective lies in the

development of a single-type logic for natural language. The paper falls into

three parts, dedicated to the description of a single-type proof theory, model

theory, and semantics for natural language: The following section contains an

informal introduction to the objects in our single-type domains. Section 3 defines

the types, terms, and models of the logic TY3
0 with a Tarski-style truth definition

and a corresponding notion of entailment. Section 4 introduces a sound Gentzen

sequent calculus for TY3
0 and proves its generalized completeness via a model

existence theorem. Section 5 provides a formal definition of possible worlds. The

penultimate section, 6, concerns the linguistic application of our logic: We show

that TY3
0 models a standard fragment of English. The paper closes with an

assessment of the merits of single-type logic and pointers to future work.

2. Informal Analysis

To prime our intuitions, we first survey the objects in our single-type models

(listed in Table 1, where A denotes the set of individuals). Their interrelations

determine the structure of the logic TY3
0, presented in Sections 3 through 5.

Worlds : Filters (and ideals) on P(A) (basic)

Individuals/Propositions : Filters (and ideals) on P(A) (basic)

Individual Concepts : Functions from worlds to individuals (derived)

Propositional Concepts : Functions from worlds to propositions (derived)

Properties : All functions in the domain hierarchy (derived)

Table 1. Basic and derived single-type objects.



A SINGLE-TYPE LOGIC FOR NATURAL LANGUAGE 4

Following Partee’s hypothesis, our single-type semantics identifies the domains

of individuals and propositions. The adoption of basic worlds will be justified

by the need for suitable property-representations, below.

Clearly, neither of Montague’s basic objects qualifies as a single-domain can-

didate. Thus, while the set of individuals lacks an internal algebraic structure,

propositions (or sets of indices) do not enable a suitable representation of in-

dividuals. We solve this problem through the adoption of basic sets of sets of

individuals (i.e. subsets of the powerset P(A)). This choice is inspired by Mon-

tague’s interpretation of determiner phrases (e.g. the man) [29], and related work

in generalized quantifier theory [5, 19, 43]. Following the latter, we represent in-

dividuals (e.g. John) by the set (e.g. {is self-identical, is a man, . . . }) of their

associated individual-sets, or ‘properties’. The partial order on property-sets

allows the interpretation of linguistic connectives via the familiar set-theoretic

operations. Thus, complex terms like John and Mary and John or Mary are in-

terpreted as the intersection, respectively union of the individuals’ characterizing

property sets. The term not John is taken to denote the latters’ complement in

the associated algebra.

Our examples suggest the identification of individual-representations with

filters on the set P(A). This is due to the closure of property-sets under fi-

nite intersection and entailment: By the algebraic structure on P(A), we know

that, if John is characterized by the properties in the above set, he will also

be characterized by the property ‘is self-identical and is a man’ (where and is

interpreted as property-intersection, ‘∩’). Since the set of men is, by definition,

included in, e.g., the set of human beings, we further expect that the ‘John’-

filter, Fj = {X ⊆ P(A) | is a man ⊆ X}, if it includes the property of being

a man, will also include the property of being human such that Fj = {X ⊆

P(A) | (is a man ∩ is human) ⊆ X}. Trivially true propositions (e.g. John is

human) can then be represented by the intersection of the filter’s set of generators

and the set {x ∈ A |x ∈ is human}. The existence of informative propositions
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is warranted by the possibility of providing proper filter extensions.1 Thus, on

the basis of the above, the proposition ‘John runs’ is represented by the filter

Gj = {X ⊆ P(A) | (is a man ∩ runs) ⊆ X}, that properly includes (i.e. is more

informative than) Fj .

In single-type semantics, property attribution takes the form of filter exten-

sions: Natural-language predicates (e.g. runs) are interpreted as functions from

filters to filters in P(A), where a filter in the function’s domain may not be more

informative than the relevant filter from its range. Thus, the property ‘runs’

maps the ‘John’-filter Fj to the more informative filter Gj , such that both the ar-

gument, Fj , and the result of functional application, Gj , are P(A)-subsets. Simi-

larly, multi-place predicates (e.g. loves) are interpreted as functions from ordered

n-tuples (e.g. the pair
〈
Fj ,Fm

〉
, with Fm a ‘Mary’-filter) to n-tuples of filters

(e.g. the pair 〈F ′j ,F ′m〉, with F ′j := {X ⊆ P(A) | (
⋂
Y ∈Fj

Y ∩ loves Mary) ⊆ X}

and F ′m := {X ⊆ P(A) | (
⋂
Y ∈Fm

Y ∩ is loved by John) ⊆ X}), where the dif-

ference between elements of the former and the latter tuple contains at most the

relation in question.

Significantly, the possibility of providing proper filter extensions is condi-

tional on the association of individual constants with families of filters on P(A).

This is required for the successful construction of functional domains: If every

individual constant could only be interpreted as a single (ultra-)filter, informa-

tive property attributions and, hence, the possibility of distinguishing different

property-representing functions, would become impossible. To obtain different

individual-representations, we interpret individual constants as individual con-

cepts [8] ([17]), i.e. functions from P(A)- to P(A)-subsets, whose application

to different filters yields distinct values. Following Carnap, we identify filters

in the function’s domain and range with worlds and world-specific individuals,

respectively. As a result, our ground domain will contain two different sorts of

objects. Of the latter, only worlds can be directly (and unambiguously) denoted

by constants in our language.

1This possibility also motivates our identification of single-type objects with proper filters,
rather than ultrafilters.



A SINGLE-TYPE LOGIC FOR NATURAL LANGUAGE 6

Given their seeming dissimilarity, on what grounds are the domains of indi-

viduals and worlds identified? The answer is that the representations of both

types of objects share more structural properties than may, at first blush, appear:

Like world-specific individuals, worlds can be characterized as sets of individual-

properties. Thus, a given world is well-defined through the identification of its

(individual) inhabitants and the assertion of their respective properties (via sets

of A-subsets). By the definition of individual concepts, worlds will always be at

least as informative as (i.e. will never be properly contained in) their associated

individuals: A world will properly contain its individual if at least one of the

world’s characterizing properties does not contain the represented individual,

and will be identical with its individual, otherwise. We illustrate the possibility

of properly contained individuals by means of an example:

Example 1. Let a world w be defined by the properties ‘is self-identical’ and ‘is

a man’, with ‘is self-identical’ = {John, Mary, the Moon}, ‘is a man’ = {John},

and ‘is not a man’ = {Mary}, (where John, Mary, and the Moon are individuals

in A). Then, since the expressions ‘John’, ‘John is self-identical’, and ‘John

is a man’ have the same denotation in w, the ‘John’-filter at w, Fj = {X ⊆

P(A) | is a man ⊆ X}, is identical to w. In contrast, since neither the property

‘is a man’ nor its complement ‘is not a man’ are true of the Moon in w, its

filter ‘the Moon’(w) = {X ⊆ P(A) |X} is properly contained in the ‘world’-

filter {X ⊆ P(A) | is a man ⊆ X}, such that ‘the Moon’(w) ( w.

On the basis of the above, what is an individual’s contribution to another

(possibly only partially overlapping) world? Their common identification as

P(A)-subsets precludes an individual’s traditional existence in a world. How-

ever, an individual’s ‘world’-contribution is neither captured by the intersec-

tion or union of its world-specific instantiations: While the intersection, {X ⊆

P(A) |X}, of an individual’s instantiations across worlds contains too little,

their union provides too much information for a characterization of the world

in question. We solve this dilemma through the admission of ‘intermediately

informative’ individuals: As filters, worlds in our logic are determined by all of
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their (proper or improper) subsets. More than being defined exclusively by the

property-set in Example 1, the world w is thus also characterized by the ‘moon’-

filter, ‘the Moon’(w), and other less-defined filters. Naturally, none of the above

is isomorphic to its underlying atom. Yet, the collection of their contributions

across worlds (and thus, the acquisition of total information) yields the desired

property.

The preceding paragraphs have identified proper filter extensions as the ‘mo-

tor’ behind propositional informativeness. By the association of individuals with

their specific worlds (above), informative filter extensions involve a shift from

one to another, more informative world. Given the identical generation of both

worlds, this is possible only if the initial world is not totally defined. We im-

plement this condition by dropping the Boolean law of Excluded Middle in our

single-type logic in favor of a weaker axiom. The described weakening of our logic

prompts a general methodological note: As the attentive reader will observe, our

logic deviates in several respects from its Montagovian (or Churchian) example.

While these variations are subject to individual choices, they are required by the

constraints of our single-type project.

We have provided a brief sketch of worlds, world-specific individuals, indi-

vidual concepts, and properties. While our observation of the need for families

of ‘individual’-filters has prompted the introduction of worlds and individual

concepts, our presentation of propositions has remained unchanged. This is

easily amended: Following the characterization of propositions as (extended)

individuals, we analyze world-independent propositions as ‘propositional con-

cepts’. Like individual concepts, the latter are intuitively understood as sets

of their world-specific instantiations. In contrast to their associated individuals,

however, world-specific propositions (if they are informative) contain exactly one

additional property.

This concludes our preliminary analysis. The following section describes the

logic that is associated with our single basic type of object.
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3. The Logic TY3
0

We begin by defining the type system of the logic TY3
0. The latter is a subsystem

of a partial variant of Gallin’s logic TY2 [17] ([32]), whose types are formed

exclusively through the use of the type for (characteristic functions of) sets of

properties ((e; t); t). The language of TY3
0 is an uncurried one-type version of

the simply-typed lambda calculus ([14,15]). Terms of TY3
0 are interpreted in the

general models from Section 3.2.

3.1. Types and Terms. To simplify notation, and aid the conception of the

type ((e; t); t) as a basic type in the logic TY3
0, we will hereafter abbreviate

‘((e; t); t)’ as ‘q’. The set of types of the single-type logic TY3
0 is then defined as

follows:

Definition 1 (TY3
0 types). The set Monotype of TY3

0 types is the smallest set of

strings such that, for 0 ≤ n ∈ N, if α1, . . . , αn ∈ Monotype, then (α1×· · ·×αn)→

q ∈ Monotype.

The logic TY3
0 constitutes a single-type variant of Church’s Simple Theory

of Types.2 For reasons of simplicity, we replace Church’s unary by an n-ary

functional type logic. Complex types (α1 × · · · × αn) → q form monotype cor-

relates of Church types α1 → · · · → αn → q, where association is to the right.

Following [42], we write (α1 × · · · × αn) → q as (α1 . . . αn; q) and identify the

type (q) with q.

The language L for single-type logic is a countable set ∪α∈MonotypeLα of

uniquely typed non-logical constants of type α. For every TY3
0 type α, we

further assume a countable set Vα of variables, with ∪α∈MonotypeVα abbreviated

as V. From these basic expressions, we form complex terms inductively with the

help of application, abstraction, and a number of connectives.

Definition 2 (TY3
0 terms). Let α1, . . . , αn, β ∈ Monotype. The set Tα of terms

of type α is defined as follows:

2Following Gallin’s convention of subscripting a logic’s name by the number of its basic types
(not counting the type for formulæ) [17], we call our logic ‘TY3

0’. The zero-subscript derives
from the neutralization of the distinction between individual- and proposition-types. The three-
superscript indicates the partiality of its models.
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i. Lα,Vα ⊆ Tα;

ii. If A ∈ T(βα1...αn;q) and B ∈ Tβ, then (AB) ∈ T(α1...αn;q);

iii. If A ∈ T(α1...αn;q) and x ∈ Vβ, then (λx.A) ∈ T(βα1...αn;q);

iv. If A,B ∈ Tα, then ¬A, (A ∧B) ∈ Tα,

From the above connectives, the connectives ∨,→, and↔ are standardly defined.

Because of the ill-definedness of their logical type in our single-type system,

the symbol for equality (=), the universal and existential quantifier (∀, ∃), the

universally true (>), false (⊥), and undefined formula (∗), and the familiar

modal operators (2,3) are not available in the logic TY3
0. This is a predictable

consequence of our restriction of the set of TY3
0 types to members of the set

Monotype, and is unproblematic. We will see in Section 6 that the adoption of

meaning postulates for non-logical constants compensates for the unavailability

of the mentioned connectives.

For notational convenience, we write ‘A ∈ Tα’ as ‘Aα’. We adopt the usual

conventions regarding binding, freedom, and closure.

We next define the semantics of the logic TY3
0. To this aim, we first provide

a definition of general models for the logic TY3
0.

3.2. Models. A model for TY3
0 consists of a TY3

0 frame F , an interpretation

function IF , and the variable assignment gF . A frame for TY3
0 is a hierarchy of

typed TY3
0 domains, which is defined as follows:

Definition 3 (General TY3
0 frames). A general TY3

0 frame is a set F = {DF
α |α ∈

Monotype} of pairwise disjoint non-empty sets such that

DF
(α1...αn;q) ⊆ {f | f : (DF

α1
× · · · ×DF

αn
)→ DF

q }

for all TY3
0 types α1, . . . , αn.
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In line with our considerations from Section 2, we define DF
q as a subset of the

space (A → 3) → 3, where 3 is the ordered set of the truth-combinations true

and not false (T), false and not true (F), and neither true nor false (N). Our

adoption of the set 3 (rather than of the set {T,F}) is motivated by the wish

to enable proper extensions of single-type objects.

Domains DF
(α1...αn;q) are sets of functions from the Cartesian product of do-

mains of the type α1 through αn to the domain of the type q. We will hereafter

drop the frame-subscript ‘F ’ whenever this can be done without creating con-

fusion. Our association of TY3
0 domains with proper subsets of function spaces

ensures the recursive axiomatizability of the entailment relation, and the asso-

ciated completeness of TY3
0. We prove the generalized completeness of TY3

0 in

Section 4.

Let us turn to the relation between TY3
0 terms in the language L and their

associated objects in a given TY3
0 frame F . The latter is established by means of

the interpretation function IF and the variable assignment gF . The function IF

is defined as follows:

Definition 4 (Interpretation). The interpretation function IF : L → F for a

TY3
0 language L and frame F = {Dα |α ∈ Monotype} assigns to each non-logical

constant cα of the type α a type-identical denotation in F such that IF (cα) ∈ Dα.

Variable assignments are analogously defined. Thus, the function gF : V → F

applies to members of the set Vα of variables of the type α to yield Dα-elements.

Given an object d ∈ Dα and variables x, y ∈ Vα, we define gF [d/x] by letting

gF [d/x](x) = d and gF [d/x](y) = gF (y) if x 6= y. For brevity, we denote the

set of all assignments gF with respect to a given TY3
0 frame F by GF . As for

domains, we will drop the frame-subscript ‘F ’ whenever suitable.

The denotation I(c) (or g(x)) of a TY3
0 term c (respectively x) is called the

object designated by c (or x). Depending on their logical type, we distinguish

three kinds of TY3
0 objects: worlds (type q), individual or propositional concepts

(type (q; q)), and properties (all complex types). Since we have identified the

domain Dq with a proper subset of the space (A → 3) → 3, many basic TY3
0

objects are partial objects. The latter are defined as follows:
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Definition 5 (TY3
0 objects). A partial object Q in the TY3

0 domain Dq is a

function that sends some type-(e; t) property to the undefined truth-value N. To

emphasize the partiality of objects, the set of functions {〈P〈e,t〉,T〉 | 〈P,T〉 ∈ Q}

(abbreviated Q+) is sometimes dubbed the denotation of Q, and the set of

functions {〈P,F〉 | 〈P,F〉 ∈ Q} (abbreviated Q−) its anti-denotation [16,32]. We

identify type-q denotations and anti-denotations with filters (cf. Sect. 2) and

ideals, respectively. The latter are subset- and union-closed subsets of P(A).

We call the difference Dq\(Q+∪Q−) the gap of Q; the intersection (Q+∩Q−),

its glut. A partial object is coherent if its glut is empty, total if its gap is empty,

and classical if it is both coherent and total. By the identification of basic-type

elements with proper filters and ideals, all basic-type objects in the logic TY3
0

are coherent.

Our previous considerations have prepared the definition of general TY3
0

models. However, before we can attend to this task, we first need to specify a

way of converting n-ary functions into unary functions. This is required by the

polyadic character of our type-forming rule from Definition 1, and the attendant

restriction of functions in the domain D(α1...αn;q) to n-tuples of (suitably typed)

arguments. Slice functions [31, 32] allow the application of n-ary functions to a

single argument.

To facilitate the definition of slice functions, we represent n-ary functions

in D(α1...αn;q) via sets of ordered n+1-tuples of the form 〈d1, . . . , dn, b〉, where b ∈

Dq and di ∈ Dαi for each i ∈ N.

Let f be a function of the type (α1 . . . αn; q) and let 1 ≤ k ≤ n ∈ N. Slice

functions code n-ary functions into unary functions of a higher type as follows:

Definition 6 (Slice functions). The k-th slice function of A applies to mem-

bers of the set Dαk
to yield n − 1-ary functions in the domain of the type

(α1 . . . αk−1αk+1 . . . αn; q).
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Thus, the application of the slice function F kA to a type-αk object B fixes the

k-th argument place of A to B, such that the following holds:

F kA(B) =
{
〈d1, . . . , dk−1, dk+1, . . . , dn, b〉 |A (d1, . . . , dk−1, B, dk+1, . . . , dn) = b

}
.

We will return to slice functions for the definition of world-specific objects and

interpretation functions (Sect. 5).

On the basis of the above, general models for TY3
0 are defined as follows:

Definition 7 (General TY3
0 models). A general model for TY3

0 is a triple MF =

〈F, IF , VF 〉, consisting of a general TY3
0 frame F , the interpretation function IF ,

and the function VF : (GF × ∪αTα)→ F . The latter assigns to each non-logical

TY3
0 term Aα a type-appropriate interpretation in Dα such that

i. VF (gF , c) := IF (c) if c ∈ L,

VF (gF , x) := gF (x) if x ∈ V ;

ii. VF (gF , AB) :=
{〈
~d, q
〉
| 〈VF (gF , B), ~d, q〉 ∈ VF (gF , A)

}
;

iii. VF (gF , λxβ.A) :=
{〈
d, VF (gF [d/x], A)

〉
| d ∈ Dβ

}
.

As a shorthand, we will often write VF (gF , A) as V (g,A), or JAKg.

The interpretations of application and abstraction (clauses (ii), (iii)) employ

a variant of Muskens’ slice functions ([31,32]).

To interpret the TY3
0 terms in Definition 2, clause (iv), we first need to define

the semantic counterparts of the connectives ∧, ∨, and ¬. By the considerations

from Section 2, the latter are interpreted as the meet, join, and complement

operations in a De Morgan algebra. De Morgan algebras have the following

definition (cf. [1]):

Definition 8 (De Morgan algebra). A bounded distributive lattice B = 〈B,∩,∪,−, 0, 1〉

that satisfies the following axioms for a, b, c ∈ B:

i-v. The laws for distributive lattices;

vi. 1 ∩ a = a and 0 ∪ a = a (Top and Bottom);

vii. −(a ∩ b) = −a ∪ −b and −(a ∪ b) = −a ∩ −b (De Morgan);

viii. −− a = a (Double Negation);

ix. −0 = 1 and −1 = 0 (Duality).
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By the algebraic structure on Dq, all complex-type domains of the logic TY3
0

form a De Morgan algebra. The following definition generalizes the operations

on Dq to any TY3
0 domain:

Definition 9 (Lifting). Let D1, . . . , Dm be domains of the type (α1 . . . αn−1; q)

and let Dq be a De Morgan algebra. Operations on Dq can then be lifted on the

function space (Di → Dq) (with Di ∈ {D1, . . . , Dm}) by pointwise definition.

Let JAiKg be a function in the space (Di → Dq). In the following, we repre-

sent JAiKg via the set
{〈

JB1Kg, . . . , JBnKg, JBn+1Kg
〉
| JAiKg

(
JB1Kg, . . . , JBnKg

)
=

JBn+1Kg & JB1Kg ∈ Dα1 , . . . , JBnKg ∈ Dαn , JBn+1Kg ∈ Dq

}
, and abbreviate

JB1Kg, . . . , JBnKg as J ~BKg. Let X =
{
JA1Kg, . . . , JAmKg

}
be the set of functions

defined above. De Morgan operations on members of the set X are then defined

as follows. (To facilitate reference to functions, we use lambda abstraction in

the metalanguage):

i. −JA1Kg := λ J ~BKg.− JA1Kg(J ~BKg);

ii.
⋂
X := λ J ~BKg.

⋂
m

{
JAmKg(J ~BKg) | JAmKg ∈ X

}
;

iii.
⋃
X := λ J ~BKg.

⋃
m

{
JAmKg(J ~BKg) | JAmKg ∈ X

}
;

iv. JA1Kg ⊆ JA2Kg := λ J ~BKg. JA1Kg(J ~BKg) ⊆ JA2Kg(J ~BKg);

v. 0 := λ J ~BKg. 0;

vi. 1 := λ J ~BKg. 1.

Above, λ J ~BKg. 0 and λ J ~BKg. 1 are constant functions on 0 and 1, respectively.

Note the partial definition of generalized top and bottom. The latter is

warranted by the invalidity of the laws of Excluded Middle and of Consistency

in the logic TY3
0, and the attendant impossibility of defining the generalized top

and bottom element via the familiar (Boolean) clauses λ J ~BKg. J ~BKg ∪ −J ~BKg,

respectively λ J ~BKg. J ~BKg ∩ −J ~BKg.

To obtain the intersection (or union) of functions in the space D(α1...αn;q), we

again employ a relational coding. The defining expression in clause (ii) can then

be understood as the intersection
⋂{〈

J ~BKg, JBn+1Kg
〉
| JAiKg

(
J ~BKg

)
= JBn+1Kg

}
of all sets of tuples that represent the relevant functions.
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The proof that every domain D(α1...αn;q) forms a De Morgan algebra is anal-

ogous to the one in [18] (cf. [23]).

The above definitions enable the interpretation of the remaining terms from

Definition 2 as follows:

Definition 10. Let MF = 〈F, IF , VF 〉 be a general model for TY3
0 and let gF

be a variable assignment for F . Then, the following holds for all A and B of

appropriate type:

i. VF (gF ,¬A) := −VF (gF , A);

ii. VF (gF , A ∧B) := VF (gF , A) ∩ VF (gF , B);

iii. VF (gF , A ∨B) := VF (gF , A) ∪ VF (gF , B),

where ∩, ∪, and − are operations in a De Morgan algebra.

This completes our discussion of the interpretation of TY3
0 terms. We next

provide a Tarski-style truth definition for the logic TY3
0, and a corresponding

notion of entailment.

3.3. Truth and Entailment. In formal linguistic semantics, truth and fal-

sity are typically defined for the (type-(s; t)) designators of propositions. Since

such objects are, by definition, not available in the logic TY3
0, we specify truth

and falsity instead for their correspondents in the type (q; q). The latter are

associated with functions from the type-((e; t); t) correspondents of partial in-

dices i (i.e. the set of all type-(e, t) properties which characterize some indi-

vidual inhabitant of i) to their subsets, whose members all characterize some

type-e argument of the proposition (cf. Sect. 2). For instance, at the world w1

from Example 1, the proposition ‘Mary is not a man’ is represented by the

filter {X ⊆ P(A) | is not a man ⊆ X}.

In line with the above, we define the truth and falsity of a propositional

concept at a world w with respect to the concept’s definition for the argument w.

Thus, the concept’s designating TY3
0 term A is true at w if there is some type-

((e; t); t) object q, such that JAKg(w) = q, and is false in w if some property P

in every member of JAKg’s domain is incompatible with some property in w.

The truth- and falsity-conditions of the remaining complex TY3
0 terms then take

their expected form.
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Definition 11 (TY3
0 truth). Let MF = 〈F, IF , VF 〉 be a general TY3

0 model for

the frame F and let gF be a variable assignment for F . Let T : (T(q;q)×W )→ 3

be a truth-assignment for the single-type correspondents of type-(s; t) formulæ

and partial possible worlds W ⊆ Dq. Let w ∈ W and A,B ∈ D(q;q). The

truth-value T(A,w) of A at w under the assignment T is then defined as follows:

i. T(A,w) = T iff for some q ∈ D((e;t);t), VF (gF , A)(w) = q,

T(A,w) = F iff for some P ∈ D(e;t), there is no w ∈W s.t.,

for some q ∈ D((e;t);t), VF (gF , A)(w) = q and P ∈ q,

T(A,w) = N otherwise;

ii. T(¬A,w) = T iff T(A,w) = F,

T(¬A,w) = F iff T(A,w) = T,

T(¬A,w) = N otherwise;

iii. T(A ∧B,w) = T iff T(A,w) = T and T(B,w) = T,

T(A ∧B,w) = F iff T(A,w) = F or T(B,w) = F,

T(A ∧B,w) = N otherwise.

The above clauses define truth (T) and falsity (F) at a world via the truth-

conditions of the Strong Kleene tables ([20]).

We call a type-(q; q) term A true (or false) at w, given a TY3
0 model MF and

variable assignment gF iff T(A,w) = T (respectively, F). We use the following

abbreviation scheme:

Definition 12. Write

w |=M A for T(A,w) = T;

w =|M A for T(A,w) = F;

w 6|=M A for T(A,w) = N or F;

w 6=|M A for T(A,w) = N or T.

Consequently, it holds that

T(A,w) = T iff w |=M A and w 6=|M A ;

T(A,w) = F iff w =|M A and w 6|=M A .
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By the possibility of assigning undefined truth values (N), we are no longer able

to identify the transmission of truth, |=M , and the transmission of falsity, =|M ,

with the transmission of non-falsity, 6=|M , respectively the transmission of non-

truth, 6|=M . This is due to the greater strictness of the modeling relations |=M

and =|M . Thus, while the relation w |=M A (or w =|M A) allows us to conclude

that A (respectively, not-A) (with w representing the actual world), its coun-

terpart, w 6=|M A (or w 6|=M A) only prevents us from concluding that not-A

(respectively, that A).

Entailment between type-(q; q) terms is defined through the partial order-

ing ⊆ on the set 3. Below, we denote sets {γ | γ ∈ T(q;q)} and {δ | δ ∈ T(q;q)} of

TY3
0 terms by ‘Γ’ and ‘∆’, respectively. Entailment for TY3

0 is then defined as

follows:

Definition 13 (TY3
0 Entailment). A set of TY3

0 terms Γ entails a set of TY3
0

terms ∆, i.e. Γ |=g ∆, iff, for all general TY3
0 models MF , assignments gF , and

worlds w, ⋂
γ∈Γ

T(γ,w) ⊆
⋃
δ∈∆

T(δ, w) .

According to Definition 13, Γ entails ∆ iff the intersection of the w-specific

evaluation of all terms in Γ is included in the union of the w-specific evaluation

of all terms in ∆ under the ordering ⊆.

In the above, the subscript ‘g’ of the entailment relation |=g refers to the

generality of TY3
0 models (cf. Def. 3, 7) and the attendant recursive axiomatiz-

ability of the entailment relation. We call a TY3
0 term γ Henkin-valid, or g-valid,

if |=g γ for every TY3
0 model MF at every world-representation w.

By the partiality of the set of truth-combinations, 3, the definition of TY3
0

entailment from Definition 13 bifurcates into the following two conditions:

i. At every w at which all γ ∈ Γ are true, some δ ∈ ∆ is true;

ii. At every w at which all δ ∈ ∆ are false, some γ ∈ Γ is false.

Conditions (i) and (ii) closely resemble the entailment conditions from [6] and [7].

The first condition captures the transmission of truth (|=M ), the second the

transmission of falsity (=|M ).

This completes our discussion of entailment in the logic TY3
0.
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4. Proof Theory

To enable a proof-theoretic characterization of TY3
0 entailment, we identify the

syntactic correspondent, ⇒, of the relation |=g. The latter denotes the partial

ordering on the set D(q;q), such that A⇒ B is defined as A∧B = A. As a result,

the connective ⇒ will always result in a bivalent formula.

On the basis of the above, we can establish the following deduction theorem:

Theorem 1 (Deduction theorem for TY3
0). Let Γ :=

{∧
γ∈Γ γ

}
and ∆ :={∨

δ∈∆ δ
}

be sets of TY3
0 terms of the type (q; q). Then, Γ entails ∆ iff ∆

is deducible from Γ:

Γ |=g ∆ iff |=g Γ⇒ ∆ .

Proof. The proof is standard.

We characterize the relation of TY3
0 entailment via a Gentzen-style sequent

calculus. A sequent Γ ⇒ ∆ asserts the deducibility of a conclusion ∆ :=∨
m∈N δm from a set Γ :=

∧
n∈N γn of type-(q; q) terms.

The following definitions reflect the double-barreledness of the entailment

relation:

Definition 14. A TY3
0 model MF for L refutes a sequent Γ ⇒ ∆ if |=M γ for

all γ ∈ Γ and 6|=M δ for all δ ∈ ∆ and if =|M δ for all δ ∈ ∆ and 6 =|M γ for

all γ ∈ Γ. A sequent is g-valid if it is not refuted by any model. The set Γ of

TY3
0 terms entails ∆, i.e. Γ |= ∆, if Γ⇒ ∆ is g-valid.

A sequent Γ⇒ ∆ is TY3
0-provable, i.e. Γ `TY3

0
∆, if there are finite Γ0 and ∆0,

with Γ0 ⊆ Γ, ∆0 ⊆ ∆, such that ∆0 (resp. Γ′0 := {¬γ | γ ∈ Γ0}) is deducible

from the set Γ0 (∆′0 := {¬δ | δ ∈ ∆0}) such that Γ0 (∆′0) is either a sequent rule

or follows by a rule from a term occurring earlier in the proof.

To facilitate the comparison with other calculi, Tables 2 and 3 (below) contain

sequent rules only for the transmission of truth. Their duals (for the transmission

of falsity) are obtained by taking the negation of all relevant terms in the sequent

and reversing the direction of the arrow, such that the rules ∧L and ∧R are turned

into their duals ∧L′ and ∧R′:
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∆⇒ Γ, NA,NB
∧L′

∆⇒ Γ, N(A ∧B)

∆, NA⇒ Γ ∆, NB ⇒ Γ
∧R′ ,

∆, N(A ∧B)⇒ Γ

with NA,NB, and N(A ∧B) signed TY3
0 terms.

The seeming violation of the subformula property (neither NA nor NB is a

subterm of N(A∧B)) is prevented by the replacement of the negation symbol ¬

with the sign N (reminiscent of the Polish notation for negation). The duals of

all remaining rules are analogously obtained. Their generation is made explicit

in Langholm’s ‘quadrant’ sequents ([24], cf. [33]), that contain four, rather than

the familiar two, structural positions.

For convenience, we omit the ‘TY3
0’-subscript of the provability relation,

brackets ‘{’ , ‘}’, and the ∅-symbol in the empty sequent. Our treatment of

sequents as sets (rather than bags or lists) of terms obviates the introduction

of contraction and exchange rules. We abbreviate sets of TY3
0 terms by capital

Greek letters. Let the terms A,B, and C be TY3
0 constants of suitable type.

Table 2 provides the sequent rules for our single-type logic.

R
A⇒ A

Γ, A⇒ ∆ Γ⇒ ∆, A
cut

Γ⇒ ∆

Γ⇒ ∆
WL

Γ, A⇒ ∆
Γ⇒ ∆

WR
Γ⇒ ∆, A

Γ, A⇒ ∆
λL

Γ, B ⇒ ∆

Γ⇒,∆, A
λR

Γ⇒,∆, B

where A =βη B where A =βη B

¬Γ⇒ ∆ ¬L¬∆⇒ Γ
Γ⇒ ¬∆ ¬R
∆⇒ ¬Γ

Γ, A,B ⇒ ∆
∧L

Γ, A ∧B ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
∧R

Γ⇒ ∆, A ∧B

Table 2. Sequent rules for TY3
0.

The rules λL and λR assert the substitutability of βη-equivalent terms. From

them, we are able to derive the usual rules, α, β, η, of lambda conversion:
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α
λx.A⇒ λy.A{x := y}

β
(λx.A)B ⇒ A{x := B}

η
λx.Ax⇒ A

if y is free for x in A if B is free for x in A if x is not free in A.

Given their standard definitions, the rules for disjunction, implication, and Dou-

ble Negation (DNI) are easily derivable. The De Morgan laws (DM) and the

rules of Non-Contradiction (NC) and Contraposition (CP) are also derivable.

The latter are specified in Table 3:

DNI
A⇒ ¬¬A DNE¬¬A⇒ A

Γ⇒ ∆, A
NC1

Γ⇒ ∆,¬(A ∧ ¬A)

Γ⇒ ∆,¬A
NC2

Γ⇒ ∆,¬(A ∧ ¬A)

Γ⇒ ∆,¬A ∨ ¬B
DM1

Γ⇒ ∆,¬(A ∧B)

Γ⇒ ∆,¬A ∧ ¬B
DM2

Γ⇒ ∆,¬(A ∨B)

Γ⇒ ∆
CP¬∆⇒ ¬Γ

Table 3. Derived rules for TY3
0.

The sequent calculus for TY3
0 is sound:

Theorem 2 (Soundness). For all sets Γ,∆ of TY3
0 terms, if Γ ` ∆, then Γ |=g

∆.

Proof. The proof in standard.

4.1. Completeness. We prove the generalized completeness of TY3
0, together

with compactness and the Löwenheim-Skolem property, via a model existence

theorem ([39]). Our proof closely follows the one in [33]: There, it is first shown

that so-called ‘Hintikka’ sequents, which result from an unsuccessful attempt at

constructing a Gentzen proof from the bottom up, are refutable. This fact is

then used to establish the refutability of a large class of sequents. For brevity,
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we restrict ourselves to a sketch of the proof. For the original proof, the reader

is referred to [33,34].

To facilitate the definition of Hintikka sequents, we represent sequents as

pairs, {L:A,R:A}, of signed TY3
0 terms, where the signs L (for ‘left’) and R

(‘right’) indicate the terms’ structural position in the sequent. For Γ,∆ as above,

the sequent Γ⇒ ∆ is then represented by the set {L:A |A ∈ Γ}∪{R:A |A ∈ ∆}.

We hereafter abbreviate Γ⇒ ∆ as Π. For simplicity, we omit the definition

of Hintikka sequents for the transmission of falsity. Dual conditions are easily

obtained via the relevant procedure, above.

Definition 15 (Hintikka sequents). A sequent Π of TY3
0 is a Hintikka sequent

if one of the following holds:

i. {L:A,R:A} * Π if A ∈ T(q;q);

ii. L:B ∈ Π =⇒ L:A ∈ Π if, for closed A,B, A =βη B,

R:B ∈ Π =⇒ R:A ∈ Π if, for closed A,B, A =βη B;

iii. L:¬∆ ∈ Π =⇒ R: ∆ ∈ Π for all closed δ ∈ ∆,

R:¬Γ ∈ Π =⇒ L: Γ ∈ Π for all closed γ ∈ Γ;

iv. L: (A ∧B) ∈ Π =⇒ L:A,B ∈ Π for all closed A,B of the same type,

R: (A ∧B) ∈ Π =⇒ R:A ∈ Π or R:B ∈ Π for all closed A,B of the same

type.

We call a Hintikka sequent Π complete if L:A ∈ Π or R:A ∈ Π for every term A

of L.

We next establish the refutability of Hintikka sequents by countable TY3
0

models:

Lemma 1 (Hintikka). Every Hintikka sequent Π is refutable by a general TY3
0

model. If Π is complete, it is refutable by a countable TY3
0 model.

Proof. Via the construction of a TY3
0 model M refuting Π. By elementary

considerations, M is countable if Π is complete. We identify the interpretation

of TY3
0 terms with their equivalence classes under equality. By induction on the

number of connectives in a TY3
0 term, we then establish that, for every A,
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a. L:A ∈ Π =⇒ |=M A;

b. R:A ∈ Π =⇒ 6|=M A;

c. L:A ∈ Π =⇒ =|M A;

d. R:A ∈ Π =⇒ 6 =|M A.

It follows that M refutes the Hintikka sequent Π.

Our proof of the model existence theorem for TY3
0 is based on the notion of

a provability property. The latter has the following definition:

Definition 16 (Provability property). Let P be a set of sequents in L. The

property P is a provability property with respect to L if P is closed under the

sequent rules such that, if {Π1, . . . ,Πn} ⊆ P and if Π1, . . . ,Πn\Π is a sequent

rule, then Π ∈ P.

A provability property in L is sound if no Π ∈ P is refuted by a general TY3
0

model for L.

Theorem 3 establishes that sequents which are not members of a sound prov-

ability property in an extended language can be extended to Hintikka sequents

in that language, and are, thus, refutable.

Theorem 3 (Model Existence). Let L and C be languages for TY3
0 such that L∩

C = ∅, where C = ∪α∈MonotypeCα and where every set Cα of non-logical constants

of type α is countably infinite. Assume that P is a sound provability property

with respect to L∪C and that Π is a sequent in L. If Π /∈ P, then Π is refutable

by a countable TY3
0 model.

Proof. Via the construction of a Hintikka sequent Π∗ such that Π ⊆ Π∗.

Let ϑ1, . . . , ϑn, . . . be an enumeration of all signed sentences in L∪C, and let ι(ϑ)

denote the index which the signed sentence ϑ obtains in this enumeration. For

every natural number n, we define a sequent Π by the following induction:

Let Π0 = Π. We define Πn+1 as follows:

Πn+1 =


Πn if Πn ∪ {ϑn} ∈ P;

Πn ∪ {ϑn} if Πn ∪ {ϑn} /∈ P.
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That Πn /∈ P for every n follows by a simple induction which uses Definition 16.

Define Π∗ = ∪nΠn. We next establish that, for all finite sets {ϑk1 , . . . , ϑkn}

and for all k ≥ max{k1, . . . , kn}, the following holds:

{ϑk1 , . . . , ϑkn} ⊆ Π∗ ⇔ Πk ∪ {ϑk1 , . . . , ϑkn} /∈ P . (1)

We then verify through the use of (1) that Π∗ is a Hintikka sequent. Con-

sequently, Π∗ is refutable by a general TY3
0 model. We show that Π∗ (and,

hence, Π) is refutable by a countable TY3
0 model via a proof that Π∗ is com-

plete.

Theorem 3 has several desirable corollaries. In particular, the following holds,

where Π is as above and where Σ ranges over sequents in L ∪ C:

Corollary 1 (Generalized Compactness). For all TY3
0 sequents Π, if M |=g Π,

then there is some finite Π0 ⊆ Π such that M |=g Π0.

Proof. The set {Σ |M |=g Σ0 for some finite Σ0 ⊆ Σ} is a sound provability

property.

Corollary 2 (Generalized Löwenheim-Skolem). For all TY3
0 sequents Π, if

M 6|=g Π, then Π is refutable by a countable TY3
0 model.

Proof. The set {Σ |M |=g Σ} is a sound provability property.

Corollary 3 (Generalized Completeness). For all finite sets Γ,∆ of TY3
0 terms,

if Γ |=g ∆, then Γ ` ∆.

Proof. The set {Σ |Σ is provable} is a sound provability property.

A proof of cut-elimination (i.e. If A,Γ ` ∆ and Γ ` ∆, A, then Γ ` ∆) is

enabled through the replacement of the partial order on TY3
0 frames by a (non-

antisymmetric) preorder, and the associated invalidation of the axiom of Exten-

sionality (cf. [38, 41]). The latter can later be added as a non-logical axiom.
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5. Worlds

With the formal apparatus of our logic in place, we now turn to some appli-

cations. First, we show how certain basic-type objects enable the obtaining of

individuals (or propositions), and the definition of the familiar necessity and

possibility operators. The resulting modal language is then used to translate a

Montague-style fragment of English.

In single-type semantics, possible worlds do double duty as the generators of

particular individual- (and proposition-)representations and as tools for modal

reasoning. Following their application in theories of intensionality, we use ap-

plication to worlds to obtain, for every TY3
0 term, a family of distinct type-

appropriate objects. Following their application in modal logic, we use quan-

tification over accessible worlds to yield the usual box and diamond operators.

Because of the requirement of worlds for the generation of adequate TY3
0 objects,

we take the former use (discussed below) as primitive. Given the availability of

worlds and accessibility relations, the usual modal operators are easily defined.

Section 2 has already emphasized the need for families of filters in P(A). To

obtain sets of differently informative filters, we interpret individual constants as

individual concepts, i.e. as functions of the type (q; q), that carry a dedicated ar-

gument for type-q worlds. We isolate a world-specific individual JAKg(w) (dubbed

the instantiation of the constant A(q;q) at w) by fixing its world-slot by some

particular world w.

Let w, MF , and gF be a specific type-q world, a TY3
0 model, and a variable

assignment, respectively. The instantiation of individual constants in w is then

generalized to TY3
0 terms of arbitrary type as follows:

Definition 17 (Instantiation). The instantiation of a type-(α1 . . . αn−1 q; q)

term A at w in MF under gF is the result of applying the n-th slice function FnJAKg

of JAKg to the world w.
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The instantiation, F 3
JloveKg(w), of the term love((q;q) (q;q) q;q) at w is thus rep-

resented by the set of triples 〈y, x, z〉 (with x, y, z ∈ D(q;q)) such that z :=

‘x loves y at w’ is true of x and y at the world in question.

World-restricted interpretation functions capture the association of TY3
0 con-

stants with their world-specific instantiations as follows:

Definition 18 (Restricted denotation). The world-restricted denotation func-

tion IF,w : L × {w} → F assigns to each non-logical constant c of the type

(α1 . . . αn−1 q; q) a type-(α1 . . . αn−1; q) denotation at the world w such that

IF,w(c) = FnIF (c)(w).

Index-specific variable assignments are analogously defined. In line with our

abbreviation for the set of all general assignments with respect to a TY3
0 frame F ,

we denote the set of all w-specific assignments with respect to a TY3
0 frame F

by GF,w. As above, we drop the frame-subscript whenever possible. World-

restricted variants of the function VF are defined as follows:

Definition 19 (Restricted TY3
0 interpretation). The restricted function VF,w :(

(GF,w × ∪αTα) × {w}
)
→ F assigns to every pair of restricted variable assign-

ments and TY3
0 terms of the type (α1 . . . αn−1 q; q) a denotation at the world w

such that VF,w(x) := gF,w(x) and VF,w(c) := IF,w(c).

The restriction of IF and VF to specific worlds yields a dedicated TY3
0 model for

every world w. The latter have the following definition:

Definition 20 (Restricted TY3
0 models). A w-restricted model for TY3

0 is a

triple MF,w = 〈F, IF,w, VF,w〉, consisting of a general TY3
0 frame F , the world-

restricted interpretation function IF,w, and the function VF,w.

A general model for TY3
0 (cf. Def. 7) can thus be represented as the union,

∪w∈WMF,w, of all restricted TY3
0 models MF,w (cf. Barwise’s ‘indexed unions’

[3], and [32]). We abbreviate VF,w(A) as JAKw,g or, when the world is fixed, as

JAKg.
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To enable an interpretation of the English expressions necessarily and pos-

sibly (cf. sentence (8)), we must first provide a formal definition of worlds and

accessibility relations:

Let A and i be variables over (type-(q; q)) individual or propositional concepts

and (type-q) worlds, respectively, where J i Kg = w. The TY3
0 term Ai then

denotes the result of applying the individual (or possibility) concept JAKg to the

world w. Because of the membership of worlds in our logic’s base domain, their

behavior is already well-defined:

Theorem 4. Let Ω(q;q) be the predicate of being a world, and let A,B, and i

be of suitable type. Then, the following rules obtain, where where A and B do

not depend on i (cf. [34]):

i. ∀i.Ωi→ ¬(A ∧ ¬A) i;

ii. ∀i.Ωi→ ((Ai ∨ ¬Ai) ∨ ¬(Ai ∨ ¬Ai));

iii. ∀i.Ωi→ (((¬A ∨B) i)↔ (¬Ai ∨Bi)).

Rules (i), (ii) assert the consistency and partiality of worlds; rule (iii) asserts

their distribution over logical operators (cf. Def. 8.v). All rules are provable

from the sequent rules for TY3
0 (cf. Sect. 4, Tables 2, 3).

We denote the actual world, w0, by the type-q constant k. By the definition

of the predicate Ω(q;q), w0 is a world such that Ωk. To ensure that it is also the

actual world, we stipulate the following (where B ∈ T(q;q)):

iv. ∀B.Bk ↔ B.

The inclusion of an object JAKg(w1) in worlds w2 ⊆ . . . ⊆ wn is expressed by the

term ((ai1 → i2) . . . → in). By the definition of truth at a world (Def. 11), and

in analogy with rule (iv), the following holds:

v. ∀i1∀i2.(Ωi1 ∧ Ωi2)→ ((Ai1 → i2)↔ Ai1).
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Consequently, the statement of the inclusion JAKg(w1) ⊆ w2 is true if and only

if T(A,w1) = T.

From the syntax and semantics of worlds, the accessibility relation R(q q;q)

is easily obtained: Let λi2λi1. R i1i2 formalize the expression ‘i2 is accessible

from i1’. The relation R inherits its properties from the partial order on Dq:

i. ∀i1.R i1i1 (Reflexivity);

ii. ∀i1∀i2∀i3.(R i1i2 ∧R i2i3)→ R i1i3) (Transitivity).

Other accessibility properties (e.g. symmetry, euclideanness) can be stipulated

via non-logical axioms.

From the relation R, we yield the modal box operator by letting [R] :=

λp(q;q).∀i ((Ωi ∧ Ri) → pi) such that [R]A is analyzed as ∀i ((Ωi ∧ Ri) → Ai).

The diamond operator 〈R〉 := λp.¬[R]¬p is obtained as the dual of [R].

However, as we have mentioned in the definition of TY3
0 terms, the universal

quantifier ∀ is not available in our single-type logic. As a result, the English

words necessarily and possibly cannot be translated into the above terms. To

compensate for this shortcoming, we translate the two expressions into non-

logical constants of suitable type. Their interpretation will then be constrained

through (non-singly-typed) meaning postulates ([29]).

6. A Linguistic Application

Our objective in this paper has been to provide a single-type semantics for nat-

ural language. The present section presents a test for our achievement of the

attempted unification: To compare the expressiveness and modeling power of

our logic with that of competing multi-type systems ([14, 17, 29]), we model a

standard subset of English ([29]; hereafter PTQ-fragment). Our project will be

judged successful if the logic TY3
0 enables a principled translation and interpre-

tation of all expressions of the PTQ-fragment. We begin with some preliminary

definitions.
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A fragment is a specifiable subset of a natural language, that contains subsets

of expressions from different syntactic categories. Significantly, complex expres-

sions will only be included in a fragment if all of their basic constituents are

included. To avoid the confusion of ‘natural’ (e.g. English) with formal terms,

we refer to the fragment’s basic and complex expressions as words and phrases,

respectively. Instances of both are written in sans serif font. Table 4 (below)

presents the words of the PTQ-fragment, together with their TY3
0 types and

translations. In the latter, italicized words (e.g. john, run) are understood as

non-logical TY3
0 constants. For notational convenience, we let the variables i, j

and x, y, P , and Q range over worlds (type q), individual (or propositional)

concepts (type (q; q)), properties of individual concepts (type-((q; q) q; q)), and

properties of properties (type-(((q; q) q; q) q; q)) respectively.

Syntactic structures represent a phrase’s combinatorial properties. To distin-

guish their different readings, we interpret phrases as sets, S, of syntactic struc-

tures. Following [13], we identify the latter with labelled bracketings, whose base

components represent words (by definition, members of S), and whose remaining

(bracketed) components, [XY ] ∈ S, represent the result of merging their respec-

tive constituents, X,Y ∈ S. Type constraints on the words or phrases’ logical

translation prevent the generation of ill-formed structures.

The translation relation  on syntactic structures is defined as follows:

Definition 21 (Type-driven translation). The relation is the smallest relation

between labelled bracketings and TY3
0 terms that conforms to the rules T0 to T4,

below. In the following, we let X,Y and A,B be expressions and TY3
0 terms of

the appropriate type:



A SINGLE-TYPE LOGIC FOR NATURAL LANGUAGE 28

Words Translation Type
John,Mary,Bill, . . . john,mary, bill . . . (q; q)
man,woman, unicorn man,woman, unicorn . . . ((q; q) q; q)
runs,walks, talks, . . . run,walk, talk . . . ((q; q) q; q)
finds, loves, . . . λQλy.Q(λx.find xy), . . . ((q; q) (q; q) q; q)
seeks, . . . seek, . . . ((((q; q) q; q) q; q) (q; q) q; q)
rapidly, allegedly, . . . rapidly, allegedly . . . (((q; q) q; q) (q; q) q; q)
in, about λQλPλy.Q(λx. in xPy), . . . ((q; q) ((q; q) q; q) (q; q) q; q)
believes that, . . . believe, . . . ((q; q) (q; q) q; q)
tries to,wishes to try,wish (((q; q) q; q) (q; q) q; q)
necessarily, possibly necessary, possible (q; q)
is λQλy.Q(λx. is xy) ((q; q) q; q)
some, a some (((q; q) q; q) ((q; q) q; q) q; q)
every every (((q; q) q; q) ((q; q) q; q) q; q)
the the (((q; q) q; q) ((q; q) q; q) q; q)
tn vαn α ∈ Monotype

Table 4. PTQ-words, TY3
0 translations, and types.

In the above table, tn represents the trace of a moved constituent in a syntactic
structure. Abstractions over their translations will be marked by superscripts.

(T0) X  A if X is a word and A its translation. (Base Rule);

(T1) If X  A, then [X] A. (Copying);

(T2) If X  A and Y  B, then [XY ] AB (Application);

if AB is well-formed, [Y X] AB otherwise;

(T3) If X  A and Y  B, then [XnY ] A(λvn.B)

if A(λvn.B) is well-formed; (Quantifying In);

(T4) If X  A and A is reducible to B, then X  B. (Reduction).

Translation is accepted modulo logical equivalence. Thus, if X  A and A ≡ B,

then X  B. The idea of type-driven translation is due to [21].

Notably, in contrast to Montague’s translation of the expressions from Ta-

ble 4, the relation  translates all words of the PTQ fragment (including aux-

iliaries and determiners) into non-logical TY3
0 constants. This is required by

the unavailability of many lower-type expressions in the logic TY3
0, and the at-

tendant absence of their associated connectives (cf. Sect. 3.1). To ensure that

the constants from Table 4 receive their ‘intuitive’ interpretations, one must

restrict the interpretation function IF on TY3
0 translations through the use of
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meaning postulates. The latter will be formulated in some lower-type language

([14,17,29]). The specification of these meaning postulates exceeds the scope of

this paper. Instead, the interested reader is referred to [25].

In line with our considerations from Section 5, all translations from Table 4

carry an extra argument for worlds. For the partial modeling of natural language,

objects of all TY3
0 types are thus represented as sets of their associated world-

specific instantiations. Primitive translations (e.g. john, man, runs) carry their

world-indices as hidden variables, such that john and run abbreviate the TY3
0

terms λi.john i and λxλi.runxi, respectively. Our treatment of ‘attitudinal’

constants (e.g. believe) will reinforce the need for an extra world-argument.

To demonstrate the expressive power of TY3
0, we translate the relevant exam-

ples3 from Montague’s PTQ-paper. The logical rendering of structures (1)–(3)

obtains the expected forms:

(1) [Bill walks] walk (bill)

(2) [[a man] walks] some (man,walk)

(3) [John [finds [a unicorn]]] some (unicorn, λx.find x john).

Notably, the syntactic structure in (3) yields the same translation as its associ-

ated phrase’s alternative reading, [[a unicorn]1 [John [finds t1]]]. The replacement

of finds by the complex verb seeks (analyzed as tries to find) ambiguates phrase (4)

between the differently scoped translations from PTQ:

(4) John seeks a unicorn.

a. [John [seeks [a unicorn]]] try (some (unicorn, λx.find x john))

b. [[a unicorn]1[John [seeks t1]]] some (unicorn, λv1.try (find v1, john))

The application of the renderings in (4.a) and (4.b) to a specific-world variable k

preserves their scopal differences. Significantly, Montagovian abstraction over

worlds is also evitable for the translation of many belief reports. This is due to

our interpretation of proper names (e.g. John) at specific (‘belief’-)worlds, and

the associated possibility of obtaining more fine-grained TY3
0 objects. While

3For reasons of space, we limit ourselves to the best-known or most interesting examples. On
their basis, the remaining examples are easily translated into TY3

0 terms.
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Montague’s blocking of the inference to (7) involves the characterization of the

logical translation of Phosphorus as the result of world-application (cf. (5.b)) and

-abstraction (cf. (6)), respectively, our world-specific interpretation in (6) has the

same outcome:

(5) a. [Mary [believes that [Phosphorus [is [the morning star]]]]]

believe (the (morningstar, λx. is x phosphorus),mary)

b. [[the morning star]1[Mary [believes that [Phosphorus [is t1]]]]]

the (morningstar, λv1.believe (is phosphorus v1,mary))

(6) hesperus (k) = phosphorus (k)

(7) [[the morning star]1[Mary [believes that [Hesperus [is t1]]]]]

the (morningstar, λv1.believe (is hesperus v1,mary))

If the expression hesperusk = phosphorusk is in Mary’s belief world JkKg, the in-

ference is valid. Otherwise, the inference is invalid. Puzzles about mathematical

belief and perception reports (cf. [4, 32]) have an analogous solution.

The successful rendering of examples (1)–(7) confirms Partee’s conjecture:

Our single-type logic enables the modeling of a Montague-style fragment of Eng-

lish under the assumption of a single basic type. Since we have identified (par-

tial) possible worlds with basic objects in our TY3
0 frames, we are further able

to interpret modal expressions at no extra cost:

(8) [Necessarily [[the morning star]1 [is t1]]]

necessary (the (morningstar, λx. is xx))

As noted above, the ‘resolution’ of the constant necessary in (8) is only possible

in a lower-type logic.

7. Conclusion

We have developed a single-type logic for natural language. The language of

this logic, an uncurried one-type variant of the simply-typed lambda calculus,

includes logical counterparts for all expressions in Montague’s fragment of Eng-

lish. Its interpretation assigns every TY3
0 term a world-specific interpretation

in a De Morgan algebra. The provability relation over TY3
0 terms formalizes
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the entailment relation between English words and phrases. By our association

of complex-type domains with general Henkin frames, the latter is completely

axiomatizable.

Our identification of basic-type objects with filters and ideals on the atom-

set A yields a new type of partiality (similar to [22]), obtained neither through

the assumption of uninterpreted TY3
0 constants nor through the partial definition

of their associated functions. Partial possible worlds, which are identified with

elements in our logic’s base domain, enable the approximation of every ultrafilter

in P(A) by a family of differently well-defined interpretations. The latter have

the expected properties and relations.

Naturally, many of the above choices are made for familiarity rather than

necessity. Thus, we can replace Church’s functional by a relational type theory,

the De Morgan algebra by a (pseudo-complemented) Heyting algebra, and its

double- by a definable or higher-powerset domain. Significantly, however, Par-

tee’s single-type requirement constrains the available options more strongly than

most other logics for natural language. Thus, her supposition excludes a substi-

tution of the typed by an untyped lambda calculus or the replacement of type

theory by (a many-sorted) first-order logic. Similarly, algebraicity and modeling

constraints block the adoption of a base domain of atoms or atom-sets alongside

the Boolean law of excluded middle.

Our efforts have been limited to the development of a single-type semantics

for ‘Montague’-English. Clearly, the modeling of larger fragments of natural

language (including, e.g., abstract, plural, and mass nouns) requires the intro-

duction of further algebraic operations (denoted by, e.g., a nominalization [12],

collectivization [26, 35], and grinding operator [23]). While the latter are well-

defined for classical multi-type logics, their introduction into the logic TY3
0 re-

quires a careful inspection (and possible adaptation) of their logical behavior.

The model-theoretic construction of the remaining objects from Section 1 is left

for future work.
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Krifka (Sigrid Beck and Hans-Martin Gärtner, eds.), Vol. 20, Berlin, 2009, 2006.
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[42] Pavel Tichý, Foundations of Partial Type Theory, Reports on Mathematical Logic 14

(1982), 59–72.

[43] Dag Westerst̊ahl, Quantifiers in Formal and Natural Languages, Handbook of Philosophical

Logic (Dov Gabbay and F. Guenthner, eds.), Vol. 4, Reidel, Dordrecht, 1989, 1989.



A SINGLE-TYPE LOGIC FOR NATURAL LANGUAGE 35

Tables

Worlds : Filters (and ideals) on P(A) (basic)
Individuals/Propositions : Filters (and ideals) on P(A) (basic)

Individual Concepts : Functions from worlds to individuals (derived)
Propositional Concepts : Functions from worlds to propositions (derived)

Properties : All functions in the domain hierarchy (derived)

Table 1. Basic and derived single-type objects.
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R
A⇒ A

Γ, A⇒ ∆ Γ⇒ ∆, A
cut

Γ⇒ ∆

Γ⇒ ∆
WL

Γ, A⇒ ∆
Γ⇒ ∆

WR
Γ⇒ ∆, A

Γ, A⇒ ∆
λL

Γ, B ⇒ ∆

Γ⇒,∆, A
λR

Γ⇒,∆, B
where A =βη B where A =βη B

¬Γ⇒ ∆ ¬L¬∆⇒ Γ
Γ⇒ ¬∆ ¬R
∆⇒ ¬Γ

Γ, A,B ⇒ ∆
∧L

Γ, A ∧B ⇒ ∆

Γ⇒ ∆, A Γ⇒ ∆, B
∧R

Γ⇒ ∆, A ∧B

Table 2. Sequent rules for TY3
0.
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DNI
A⇒ ¬¬A DNE¬¬A⇒ A

Γ⇒ ∆, A
NC1

Γ⇒ ∆,¬(A ∧ ¬A)

Γ⇒ ∆,¬A
NC2

Γ⇒ ∆,¬(A ∧ ¬A)

Γ⇒ ∆,¬A ∨ ¬B
DM1

Γ⇒ ∆,¬(A ∧B)

Γ⇒ ∆,¬A ∧ ¬B
DM2

Γ⇒ ∆,¬(A ∨B)

Γ⇒ ∆
CP¬∆⇒ ¬Γ

Table 3. Derived rules for TY3
0.
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Words Translation Type
John,Mary,Bill, . . . john,mary, bill . . . (q; q)
man,woman, unicorn man,woman, unicorn . . . ((q; q) q; q)
runs,walks, talks, . . . run,walk, talk . . . ((q; q) q; q)
finds, loves, . . . λQλy.Q(λx.find xy), . . . ((q; q) (q; q) q; q)
seeks, . . . seek, . . . ((((q; q) q; q) q; q) (q; q) q; q)
rapidly, allegedly, . . . rapidly, allegedly . . . (((q; q) q; q) (q; q) q; q)
in, about λQλPλy.Q(λx. in xPy), . . . ((q; q) ((q; q) q; q) (q; q) q; q)
believes that, . . . believe, . . . ((q; q) (q; q) q; q)
tries to,wishes to try,wish (((q; q) q; q) (q; q) q; q)
necessarily, possibly necessary, possible (q; q)
is λQλy.Q(λx. is xy) ((q; q) q; q)
some, a some (((q; q) q; q) ((q; q) q; q) q; q)
every every (((q; q) q; q) ((q; q) q; q) q; q)
the the (((q; q) q; q) ((q; q) q; q) q; q)
tn vαn α ∈ Monotype

Table 4. PTQ-words, translations, and types.

In the above table, tn represents the trace of a moved constituent in a syntactic
structure. Abstractions over their translations will be marked by superscripts.

†Contact information: Center for Logic and Philosophy of Science, Tilburg

University, P.O. BOX 90153, 5000 LE Tilburg, The Netherlands, K.Liefke@uvt.nl.


